一、拉格朗日定理來證明什么?
拉格朗日中值定理是微積分中的重要定理之一,大多數是利用羅爾中值定理構建輔助函數來證明的。
擴展資料
拉格朗日中值定理又稱拉氏定理,是微分學中的基本定理之一,它反映了可導函數在閉區間上的.整體的平均變化率與區間內某點的局部變化率的關系。拉格朗日中值定理是羅爾中值定理的推廣,同時也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一階展開)。
法國數學家拉格朗日于1797年在其著作《解析函數論》的第六章提出了該定理,并進行了初步證明,因此人們將該定理命名為拉格朗日中值定理。
二、拉格朗日配方法公式?
拉格朗日插值公式
線性插值也叫兩點插值,已知函數y=f(x)在給定互異點x0,x1上的值為y0=f(x0),y1=f(x1)線性插值就是構造一個一次多項式p1(x)=ax+b使它滿足條件p1(x0)=y0p1(x1)=y1其幾何解釋就是一條直線,通過已知點a(x0,y0),b(x1,y1)。線性插值計算方便、應用很廣,但由于它是用直線去代替曲線,因而一般要求[x0,x1]比較小,且f(x)在[x0,x1]上變化比較平穩,否則線性插值的誤差可能很大。為了克服這一缺點,有時用簡單的曲線去近似地代替復雜的曲線,最簡單的曲線是二次曲線,用二次曲線去逼近復雜曲線的情形。
三、拉格朗日恒等式怎么證明?
一個推論,利用拉格朗日恒等式可以證明柯西不等式,好了,下面開始給你證明.‘
有一個適合中學生的拉格朗日恒等式:
[(a1)^2+(a2)^2][(b1)^2+(b2)^2]=
[(a1)(b1)+(a2)(b2)]^2+[(a2)(b1)-(a1)(b2)]^2
[(a1)^2+(a2)^2+(a3)^2][(b1)^2+(b2)^2+(b3)^2]=
=[(a1)(b1)+(a2)(b2))+(a3)(b3)]^2+[(a2)(b1)-(a1)(b2)]^2+
+[(a3)(b1)-(a1)(b3)]^2+[(a2)(b3)-(a3)(b2)]^2
[(a1)^2+...+(an)^2][(b1)^2+...+(bn)^2]=
=[(a1)(b1)+...+(an)(bn)]^2+[(a2)(b1)-(a1)(b2)]^2+
+[(a3)(b1)-(a1)(b3)]^2+..+[(a(n-1))(bn)-(an)(b(n-1))]^2
.
四、拉格朗日的故事?
拉格朗日出生在意大利的都靈。由于是長子,父親一心想讓他學習法律,然而,拉格朗日對法律毫無興趣,偏偏喜愛上文學。
直到16歲時,拉格朗日仍十分偏愛文學,對數學尚未產生興趣。16歲那年,他偶然讀到一篇介紹牛頓微積分的文章《論分析方法的優點》,使他對牛頓產生了無限崇拜和敬仰之情,于是,他下決心要成為牛頓式的數學家。
在進入都靈皇家炮兵學院學習后,拉格朗日開始有計劃地自學數學。由于勤奮刻苦,他的進步很快,尚未畢業就擔任了該校的數學教學工作。20歲時就被正式聘任為該校的數學副教授。從這一年起,拉格朗日開始研究“極大和極小”的問題。他采用的是純分析的方法。1758年8月,他把自己的研究方法寫信告訴了歐拉,歐拉對此給予了極高的評價。從此,兩位大師開始頻繁通信,就在這一來一往中,誕生了數學的一個新的分支——變分法。
1759年,在歐拉的推薦下,拉格朗日被提名為柏林科學院的通訊院士。接著,他又當選為該院的外國院士。
1762年,法國科學院懸賞征解有關月球何以自轉,以及自轉時總是以同一面對著地球的難題。拉格朗日寫出一篇出色的論文,成功地解決了這一問題,并獲得了科學院的大獎。拉格朗日的名字因此傳遍了整個歐洲,引起世人的矚目。兩年之后,法國科學院又提出了木星的4個衛星和太陽之間的攝動問題的所謂“六體問題”。面對這一難題,拉格朗日毫不畏懼,經過數個不眠之夜,他終于用近似解法找到了答案,從而再度獲獎。這次獲獎,使他贏得了世界性的聲譽。
1766年,拉格朗日接替歐拉擔任柏林科學院物理數學所所長。在擔任所長的20年中,拉格朗日發表了許多論文,并多次獲得法國科學院的大獎:1722年,其論文《論三體問題》獲獎;1773年,其論文《論月球的長期方程》再次獲獎;1779年,拉格朗日又因論文《由行星活動的試驗來研究彗星的攝動理論》而獲得雙倍獎金。
在柏林科學院工作期間,拉格朗日對代數、數論、微分方程、變分法和力學等方面進行了廣泛而深入的研究。他最有價值的貢獻之一是在方程論方面。他的“用代數運算解一般n次方程(n4)是不能的”結論,可以說是伽羅華建立群論的基礎。
五、拉格朗日條件?
[拉格朗日(Lagrange)中值定理]若函數f(x)滿足條件:
(1)在閉區間[a,b]上連續;
(2)在開區間(a,b)內可導,則在(a,b)內至少存在一點ξ,使得
顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
六、拉格朗日法則?
拉格朗日法是描述流體運動的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個質點的運動參數(位置坐標、速度、加速度等)隨時間的變化規律。綜合所有流體質點運動參數的變化,便得到了整個流體的運動規律。
在研究波動問題時,常用拉格朗日法
七、拉格朗日系數?
設給定二元函數z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點,先做拉格朗日函數,其中λ為參數。求L(x,y)對x和y的一階偏導數,令它們等于零,并與附加條件聯立,即
L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程組解出x,y及λ,如此求得的(x,y),就是函數z=?(x,y)在附加條件φ(x,y)=0下的可能極值點。
八、拉格朗日著作?
約瑟夫·拉格朗日
外文名
Joseph-Louis Lagrange
別名
拉格朗日
性別
男
出生日期
1736年
去世日期
1813年4月10日
國籍
法國
出生地
意大利都靈
職業
數學家
物理學家
代表作品
《關于解數值方程》和《關于方程的代數解法的研究》
主要成就
拉格朗日中值定理等
數學分析的開拓者
九、拉格朗日極值?
在數學最優化問題中,拉格朗日乘數法(以數學家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的多元函數的極值的方法。這種方法將一個有n 個變量與k 個約束條件的最優化問題轉換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標量未知數,即拉格朗日乘數:約束方程的梯度(gradient)的線性組合里每個矢量的系數。
引入新變量拉格朗日乘數,即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設出的隱函數的微分為零的未知數的值。
十、為什么能用羅爾定理證明拉格朗日?
羅爾定理可知。
fa=fb時,存在某點e,使f′e=0。
開始證明拉格朗日。
假設一函數fx。
目標:證明fb-fa=f′e(b-a),即拉格朗日。
假設fx來做成一個毫無意義的函數,fx-(fb-fa)/(b-a)*x,我們也不知道他能干啥,是我們隨便寫的一個特殊函數,我們令它等于Fx。
這個特殊函數在于,這個a和b,正好滿足Fb=Fa,且一定存在這個a和b。
此時就有羅爾定理的前提了。
于是得出有一個e,能讓F′e=0(羅爾定理)
即(fx-(fb-fa)/(b-a)*x)′,
上面求導等于f′x-(fb-fa)/(b-a)。
將唯一的x帶換成e,并且整個式子等于0。
變成f′e-(fb-fa)/(b-a)=0→
f′e=(fb-fa)/(b-a)→
f′e(b-a)=(fb-fa)。
擴展資料
證明過程
證明:因為函數 f(x) 在閉區間[a,b] 上連續,所以存在最大值與最小值,分別用 M 和 m 表示,分兩種情況討論:
1. 若 M=m,則函數 f(x) 在閉區間 [a,b] 上必為常函數,結論顯然成立。
2. 若 M>m,則因為 f(a)=f(b) 使得最大值 M 與最小值 m 至少有一個在 (a,b) 內某點ξ處取得,從而ξ是f(x)的極值點,又條件 f(x) 在開區間 (a,b) 內可導得,f(x) 在 ξ 處取得極值,由費馬引理推知:f'(ξ)=0。
另證:若 M>m ,不妨設f(ξ)=M,ξ∈(a,b),由可導條件知,f'(ξ+)<=0,f'(ξ-)>=0,又由極限存在定理知左右極限均為 0,得證。
幾何意義
若連續曲線y=f(x) 在區間 [a,b] 上所對應的弧段 AB,除端點外處處具有不垂直于 x 軸的切線,且在弧的兩個端點 A,B 處的縱坐標相等,則在弧 AB 上至少有一點 C,使曲線在C點處的切線平行于 x 軸。
首先是式子進行整理,整理成左邊是式子,右邊是零,其次是構造函數,構造的這個函數的導數要等于原來的函數,這便于用羅爾定理,其次是要找出能使用羅爾定理的最后一個條件,即兩個函數值相等,最后用羅爾定理證明必有一點導數值為零,即得證。