1. 拉格朗日乘數(shù)法求最值
構(gòu)造函數(shù)4a+b+m(a^2+b^2+c^2-3)
對函數(shù)求偏導(dǎo)并令其等于0
4+2ma=0
1+2mb=0
2mc=0
同時a^2+b^2+c^2=3
所以
m=根號17/2根號3
a=-4根號3/根號17
b=-根號3/根號17
4a+b=-根號51
1、是求極值的,不是求最值的
2、如果要求最值,要把極值點的函數(shù)值和不可導(dǎo)點的函數(shù)值還有端點函數(shù)值進行比較
3、書上說是可能的極值點,這個沒錯,比如f(x)=x^3,在x=0點導(dǎo)數(shù)確實為0,但是不是極值點,所以是可能的極值點,到底是不是要帶入原函數(shù)再看
2. 拉格朗日乘數(shù)法求最值高中
拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來解決有約束極值的一種方法。
有約束極值:舉例說明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。
上述問題可以通過消元來解決,例如消去x,則變成
z=(y-1)^2+y^2
則容易求解。
但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時消元將會很繁,則須用拉格朗日乘數(shù)法,過程如下:
令
f=x^2+y^2+k*((y-1)^2+y^2)
令
f對x的偏導(dǎo)=0
f對y的偏導(dǎo)=0
f對k的偏導(dǎo)=0
解上述三個方程,即可得到可讓z取到極小值的x,y值。
拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡單地舉一例,更復(fù)雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學(xué)教材。
3. 拉格朗日乘數(shù)法求最值應(yīng)用題
拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的 多元函數(shù)的 極值的方法。
這種方法將一個有n 個變量與k 個 約束條件的最優(yōu)化問題轉(zhuǎn)換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。
這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個向量的系數(shù)。
此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。
4. 拉格朗日乘數(shù)法求最值例題
拉格郎日乘數(shù)法的適用條件是乘數(shù)不等于0。
求最值(最值是某個區(qū)間的最大或最小,注意最大/最小可能有同值的多個,所以也不唯一哈,極值是一個小范圍,很小很小,內(nèi)的最值).因為最值總是發(fā)生在極值點+區(qū)間邊界點+間斷點處,所以可以用拉朗乘數(shù)求出極值,用邊界和間斷點極限求出可疑極值,比較他們的大小,就可以找到區(qū)間內(nèi)的最值了.特別地,若函數(shù)在區(qū)間內(nèi)用拉朗求出僅一個極值,切很易判定沒有其他可疑極值點,就可以直接判斷那個極值是最值;或者可以判斷函數(shù)在所給區(qū)間內(nèi)單調(diào)(比如exp(x^2+y^2)在(x>0,y>0)時單調(diào)遞增),就不用求極值(因為沒有),直接求區(qū)間邊界(或者間斷點,有間斷點也可以單調(diào)的)作為最值。
5. 拉格朗日乘數(shù)法求得的是最值還是極值
在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的多元函數(shù)的極值的方法。
這種方法將一個有n 個變量與k 個約束條件的最優(yōu)化問題轉(zhuǎn)換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個向量的系數(shù)。此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。6. 拉格朗日乘數(shù)法求最值判斷頂點
拉格朗日乘數(shù)法是多元微分學(xué)中用來求函數(shù)z=f(x,y)在滿足g(x,y)=0條件下的極值問題的方法:通過設(shè)F(x,y)=f(x,y)+λg(x,y),其中λ稱為拉格朗日乘數(shù),并求F(x,y)的極值點求得條件極值的方法
7. 拉格朗日乘數(shù)法求最值時邊界交點漏了
拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的 多元函數(shù)的 極值的方法。
這種方法將一個有n 個變量與k 個 約束條件的最優(yōu)化問題轉(zhuǎn)換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個向量的系數(shù)。此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值
8. 拉格朗日乘數(shù)法求最值時邊界怎么考慮
是的,拉格朗日乘數(shù)法又叫條件極值法,邊界的表達式就相當(dāng)于條件。而非邊界求極值一般采用求二階偏導(dǎo)的方法。
9. 拉格朗日乘數(shù)法求最值一定正確嗎
在這里xyz都是自變量,
V=xyz就是一個多元函數(shù),并不是方程,
x,y,z的變化都會使V發(fā)生變化
沒錯,xyz滿足了條件
φ(x,y,z)=2xy+2yz+2xz-a^2=0
你當(dāng)然可以把其中一個用另外兩個來表示,
再帶回到V=xyz中,
然后只求偏導(dǎo)兩次就可以了