1. 拉格朗日使用的條件
[拉格朗日(Lagrange)中值定理]若函數f(x)滿足條件:
(1)在閉區間[a,b]上連續;
(2)在開區間(a,b)內可導,則在(a,b)內至少存在一點ξ,使得
顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
2. 拉格朗日兩種形式
在數學最優化問題中,拉格朗日乘數法(以數學家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的多元函數的極值的方法。這種方法將一個有n 個變量與k 個約束條件的最優化問題轉換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標量未知數,即拉格朗日乘數:約束方程的梯度(gradient)的線性組合里每個矢量的系數。
引入新變量拉格朗日乘數,即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設出的隱函數的微分為零的未知數的值。
3. 什么時候用拉格朗日
這個定理是高數中比較基礎且比較難的問題。一般是證明題中運用得比較多。比如說證明一個不等式。需要用到公式中的,切記這個是滿足區間中的任意數,要正確理解任意的含義。 舉一個證明的列子,書上也出現過的。證明(b-a)/b<lnb-lna<(b-a)/a要正確證明這個題,要先構造一個函數f(x)=lnx,然后運用拉格朗日中值定理。
4. 拉格朗日方法
拉格朗日插值公式
線性插值也叫兩點插值,已知函數y=f(x)在給定互異點x0,x1上的值為y0=f(x0),y1=f(x1)線性插值就是構造一個一次多項式p1(x)=ax+b使它滿足條件p1(x0)=y0p1(x1)=y1其幾何解釋就是一條直線,通過已知點a(x0,y0),b(x1,y1)。線性插值計算方便、應用很廣,但由于它是用直線去代替曲線,因而一般要求[x0,x1]比較小,且f(x)在[x0,x1]上變化比較平穩,否則線性插值的誤差可能很大。為了克服這一缺點,有時用簡單的曲線去近似地代替復雜的曲線,最簡單的曲線是二次曲線,用二次曲線去逼近復雜曲線的情形。
5. 拉格朗日定理使用條件
由開爾文定理可直接推論得到拉格朗日定理(Lagrange theorem),即漩渦不生不滅定理:
正壓理想流體在質量力有勢的情況下,如果初始時刻某部分流體內無渦,則在此之前或以后的任何時刻中這部分流體皆為無渦。反之,若初始時刻該部分流體有渦,則在此之前或以后的任何時刻中這部分流體皆為有渦。
6. 拉格朗日約束
羅爾中值定理能推出拉格朗日中值定理和柯西中值定理,反過來拉格朗日中值定理和柯西中值定理也可以推出羅爾中值定理。
泰勒中值定理是由柯西中值定理推出來的。泰勒中值定理在一階導數情形就是拉格朗日中值定理。
羅比達法則是柯西中值定理在求極限時應用。
7. 什么時候不能用拉格朗日
拉格朗日法是描述流體運動的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個質點的運動參數(位置坐標、速度、加速度等)隨時間的變化規律。綜合所有流體質點運動參數的變化,便得到了整個流體的運動規律。
在研究波動問題時,常用拉格朗日法
8. 拉格朗日定理適用條件
拉格朗日定理存在于多個學科領域中,分別為:流體力學中的拉格朗日定理;微積分中的拉格朗日定理;數論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質量力有勢的情況下,如果初始時刻某部分流體內無渦,則在此之前或以后的任何時刻中這部分流體皆為無渦。以某一起始時刻每個質點的坐標位置(a、b、c),作為該質點的標志。 如果在一個正整數的因數分解式中,沒有一個數有形式如4k+3的質數次方,該正整數可以表示成兩個平方數之和。
9. 拉格朗日成立的三個條件
設給定二元函數z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點,先做拉格朗日函數,其中λ為參數。求L(x,y)對x和y的一階偏導數,令它們等于零,并與附加條件聯立,即
L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程組解出x,y及λ,如此求得的(x,y),就是函數z=?(x,y)在附加條件φ(x,y)=0下的可能極值點。