一、拉格朗日求極值公式?
對于無約束條件的函數(shù)求極值,主要利用導數(shù)求解法
例如求解函數(shù)f(x,y)=x3-4x2+2xy-y2+1的極值。步驟如下:
(1)求出f(x,y)的一階偏導函數(shù)f’x(x,y),f’y(x,y)。
f’x(x,y) = 3x2-8x+2y
f’y(x,y) = 2x-2y
(2)令f’x(x,y)=0,f’y(x,y)=0,解方程組。
3x2-8x+2y = 0
2x-2y = 0
得到解為(0,0),(2,2)。這兩個解是f(x,y)的極值點。
二、求通俗解釋拉格朗日點原理?
拉格朗日中值定理可以看成是中間有點的導數(shù)值等于連接起點終點直線的斜率,就是中間那一點的切線斜率等于連接那兩點直線的斜率(就是平行了)
三、高數(shù)拉格朗日定理求極限?
求極限常用等價無窮小替代、洛必達法則、泰勒公式等方法,有時候等價無窮小不能用,洛必達法則過于繁瑣,泰勒公式法雖然強大但是相對麻煩。對有一些形式,使用拉格朗日中值定理非常便捷。下面舉兩個個例子:
這種形式的式子,很明顯直接使用等價無窮小是不行的,洛必達法則又麻煩至極,泰勒公式做起來也不輕松。
我們發(fā)現(xiàn)上述式子有這樣的特點:右側減法式子里,兩項的形式都非常類似,并且隨著極限的趨向,兩項越來越接近。這時候我們可以使用拉格朗日中值定理處理這個減法式子。
于是上述式子就可以變成(恒等變換):
這個時候,隨著x的增大,可以發(fā)現(xiàn),拉格朗日中值定理作用的區(qū)間越來越小,最終可以確定
然后接下來就非常好辦了
上面的式子有這樣的共性:1.存在兩項相減因式且形式相同;2.隨著x的變化,因式的兩項越來越接近(
所在區(qū)間變小)
四、拉格朗日求極限有什么限制?
這里用的是導數(shù)的定義,不是拉格朗日中值定理,雖然有點象,但其本質是不一樣的。當然,拉格拉日中值定理只要原函數(shù)在開區(qū)間內可導,在閉區(qū)間內連續(xù)就可以了,沒有要求導函數(shù)一定要連續(xù)
五、拉格朗日乘數(shù)法求最值?
構造函數(shù)4a+b+m(a^2+b^2+c^2-3)
對函數(shù)求偏導并令其等于0
4+2ma=0
1+2mb=0
2mc=0
同時a^2+b^2+c^2=3
所以
m=根號17/2根號3
a=-4根號3/根號17
b=-根號3/根號17
4a+b=-根號51
1、是求極值的,不是求最值的
2、如果要求最值,要把極值點的函數(shù)值和不可導點的函數(shù)值還有端點函數(shù)值進行比較
3、書上說是可能的極值點,這個沒錯,比如f(x)=x^3,在x=0點導數(shù)確實為0,但是不是極值點,所以是可能的極值點,到底是不是要帶入原函數(shù)再看
六、用拉格朗日乘數(shù)法求極值:)?
在數(shù)學最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的多元函數(shù)的極值的方法。
這種方法將一個有n 個變量與k 個約束條件的最優(yōu)化問題轉換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個向量的系數(shù)。此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設出的隱函數(shù)的微分為零的未知數(shù)的值。七、拉格朗日乘數(shù)法求需求函數(shù)?
拉格朗日乘數(shù)法是多元微分學中用來求函數(shù)z=f(x,y)在滿足g(x,y)=0條件下的極值問題的方法:通過設F(x,y)=f(x,y)+λg(x,y),其中λ稱為拉格朗日乘數(shù),并求F(x,y)的極值點求得條件極值的方法
八、拉格朗日條件?
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內可導,則在(a,b)內至少存在一點ξ,使得
顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
九、拉格朗日法則?
拉格朗日法是描述流體運動的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個質點的運動參數(shù)(位置坐標、速度、加速度等)隨時間的變化規(guī)律。綜合所有流體質點運動參數(shù)的變化,便得到了整個流體的運動規(guī)律。
在研究波動問題時,常用拉格朗日法
十、拉格朗日系數(shù)?
設給定二元函數(shù)z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點,先做拉格朗日函數(shù),其中λ為參數(shù)。求L(x,y)對x和y的一階偏導數(shù),令它們等于零,并與附加條件聯(lián)立,即
L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程組解出x,y及λ,如此求得的(x,y),就是函數(shù)z=?(x,y)在附加條件φ(x,y)=0下的可能極值點。