一、拉格朗日乘數法對x求導
在這里xyz都是自變量,
V=xyz就是一個多元函數,并不是方程,
x,y,z的變化都會使V發生變化
沒錯,xyz滿足了條件
φ(x,y,z)=2xy+2yz+2xz-a^2=0
你當然可以把其中一個用另外兩個來表示,
再帶回到V=xyz中,
然后只求偏導兩次就可以了
二、為什么有時候用拉格朗日中值求極限會錯誤?
因為拉格朗日中值定理有一個變形,即所謂的有限增量公式:f(x0+Δx)-f(x0)=f'(x0+θΔx)Δx,0<θ<1。
用這個公式計算就會正確
三、拉格朗日的故事?
拉格朗日出生在意大利的都靈。由于是長子,父親一心想讓他學習法律,然而,拉格朗日對法律毫無興趣,偏偏喜愛上文學。
直到16歲時,拉格朗日仍十分偏愛文學,對數學尚未產生興趣。16歲那年,他偶然讀到一篇介紹牛頓微積分的文章《論分析方法的優點》,使他對牛頓產生了無限崇拜和敬仰之情,于是,他下決心要成為牛頓式的數學家。
在進入都靈皇家炮兵學院學習后,拉格朗日開始有計劃地自學數學。由于勤奮刻苦,他的進步很快,尚未畢業就擔任了該校的數學教學工作。20歲時就被正式聘任為該校的數學副教授。從這一年起,拉格朗日開始研究“極大和極小”的問題。他采用的是純分析的方法。1758年8月,他把自己的研究方法寫信告訴了歐拉,歐拉對此給予了極高的評價。從此,兩位大師開始頻繁通信,就在這一來一往中,誕生了數學的一個新的分支——變分法。
1759年,在歐拉的推薦下,拉格朗日被提名為柏林科學院的通訊院士。接著,他又當選為該院的外國院士。
1762年,法國科學院懸賞征解有關月球何以自轉,以及自轉時總是以同一面對著地球的難題。拉格朗日寫出一篇出色的論文,成功地解決了這一問題,并獲得了科學院的大獎。拉格朗日的名字因此傳遍了整個歐洲,引起世人的矚目。兩年之后,法國科學院又提出了木星的4個衛星和太陽之間的攝動問題的所謂“六體問題”。面對這一難題,拉格朗日毫不畏懼,經過數個不眠之夜,他終于用近似解法找到了答案,從而再度獲獎。這次獲獎,使他贏得了世界性的聲譽。
1766年,拉格朗日接替歐拉擔任柏林科學院物理數學所所長。在擔任所長的20年中,拉格朗日發表了許多論文,并多次獲得法國科學院的大獎:1722年,其論文《論三體問題》獲獎;1773年,其論文《論月球的長期方程》再次獲獎;1779年,拉格朗日又因論文《由行星活動的試驗來研究彗星的攝動理論》而獲得雙倍獎金。
在柏林科學院工作期間,拉格朗日對代數、數論、微分方程、變分法和力學等方面進行了廣泛而深入的研究。他最有價值的貢獻之一是在方程論方面。他的“用代數運算解一般n次方程(n4)是不能的”結論,可以說是伽羅華建立群論的基礎。
四、拉格朗日條件?
[拉格朗日(Lagrange)中值定理]若函數f(x)滿足條件:
(1)在閉區間[a,b]上連續;
(2)在開區間(a,b)內可導,則在(a,b)內至少存在一點ξ,使得
顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
五、拉格朗日法則?
拉格朗日法是描述流體運動的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個質點的運動參數(位置坐標、速度、加速度等)隨時間的變化規律。綜合所有流體質點運動參數的變化,便得到了整個流體的運動規律。
在研究波動問題時,常用拉格朗日法
六、拉格朗日系數?
設給定二元函數z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點,先做拉格朗日函數,其中λ為參數。求L(x,y)對x和y的一階偏導數,令它們等于零,并與附加條件聯立,即
L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程組解出x,y及λ,如此求得的(x,y),就是函數z=?(x,y)在附加條件φ(x,y)=0下的可能極值點。
七、拉格朗日著作?
約瑟夫·拉格朗日
外文名
Joseph-Louis Lagrange
別名
拉格朗日
性別
男
出生日期
1736年
去世日期
1813年4月10日
國籍
法國
出生地
意大利都靈
職業
數學家
物理學家
代表作品
《關于解數值方程》和《關于方程的代數解法的研究》
主要成就
拉格朗日中值定理等
數學分析的開拓者
八、拉格朗日極值?
在數學最優化問題中,拉格朗日乘數法(以數學家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的多元函數的極值的方法。這種方法將一個有n 個變量與k 個約束條件的最優化問題轉換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標量未知數,即拉格朗日乘數:約束方程的梯度(gradient)的線性組合里每個矢量的系數。
引入新變量拉格朗日乘數,即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設出的隱函數的微分為零的未知數的值。
九、考研對羅爾定理,拉格朗日中定理,柯西中值定理要求如何?
使用區間是閉區間,且要求在區間上連續可導考研的話,微分中值定理是高數的重點及難點考試的話一般拿來壓軸所以這章是很深的,一般需要構造另外一個函數才能完成證明題.我看的書都是借圖書館的,多去圖書館吧.
十、單擺的拉格朗日方程?
1拉格朗日公式
拉格朗日方程
對于完整系統用廣義坐標表示的動力方程,通常系指第二類拉格朗日方程,是法國數學家J.-L.拉格朗日首先導出的。通常可寫成:
式中T為系統用各廣義坐標qj和各廣義速度q'j所表示的動能;Qj為對應于qj的廣義力;N(=3n-k)為這完整系統的自由度;n為系統的質點數;k為完整約束方程個數。
插值公式
線性插值也叫兩點插值,已知函數y = f(x)在給定互異點x0, x1上的值為y0= f(x0),y1= f(x1)線性插值就是構造一個一次多項式
P1(x) = ax + b