1. 拉格朗日計算方法
[拉格朗日(Lagrange)中值定理]若函數f(x)滿足條件:
(1)在閉區間[a,b]上連續;
(2)在開區間(a,b)內可導,則在(a,b)內至少存在一點ξ,使得
顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
2. 拉格朗日函數計算方法
任何優化問題的拉格朗日對偶函數,不管原問題的凸凹性,都是關于拉格朗日乘子的凹函數
為理解這個問題,首先有個結論:對于一凹函數族F:{f1,f2,f3...},取函數f在任意一點x的函數值為inf fi(x),即F中所有函數在這一點的值的下限,則f為凹函數。F為有限集、無限集均成立(此結論不難證明)
顯然,仿射函數是凹函數(實際既凸又凹),將lagrangian看成關于拉格朗日乘子的一族仿射函數,lagrange dual function在每一點的取值是這族凹函數的最小值,滿足上面的條件
3. 拉格朗日計算器
一.線性插值(一次插值) 已知函數f(x)在區間[xk ,xk+1 ]的端點上的函數值yk =f(xk ), yk+1 = f(xk+1 ),求一個一次函數y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其幾何意義是已知平面上兩點(xk ,yk ),(xk+1 ,yk+1 ),求一條直線過該已知兩點。
首先,插值法是:利用函數f (x)在某區間中插入若干點的函數值,作出適當的特定函數,在這些點上取已知值,在區間的其他點上用這特定函數的值作為函數f (x)的近似值,這種方法稱為插值法.
其目的便就是估算出其他點上的函數值.
而拉格朗日插值法就是一種插值法.
4. 拉格朗日計算方法實驗報告
在數學最優化問題中,拉格朗日乘數法(以數學家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的多元函數的極值的方法。這種方法將一個有n 個變量與k 個約束條件的最優化問題轉換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標量未知數,即拉格朗日乘數:約束方程的梯度(gradient)的線性組合里每個矢量的系數。
引入新變量拉格朗日乘數,即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設出的隱函數的微分為零的未知數的值。
5. 拉格朗日量公式完整版
魔方由六個中心塊、十二個棱塊、八個角塊組成,所對應的棱塊有兩個面的不同顏色,角塊有3個面的不同顏色,其中棱塊只能和棱塊換位,角塊只能和角塊換位,中心塊不能移動。國際魔方標準色為:上黃-下白,前藍-后綠,左橙-右紅,具體步驟如下:
1、選好白色作為底面。
2、把四個帶白色的棱塊,轉到白色的對面,即為黃色這面。
3、旋轉底下兩層或是頂層,使得頂層的棱塊側面的顏色跟中心塊的面的顏色一樣。
4、逆時針或順時針旋轉該面180度,使得該白色棱塊轉到白色中心塊同一面。
6. 拉格朗日計算方法的實際應用
設給定二元函數z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點,先做拉格朗日函數,其中λ為參數。求L(x,y)對x和y的一階偏導數,令它們等于零,并與附加條件聯立,即
L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程組解出x,y及λ,如此求得的(x,y),就是函數z=?(x,y)在附加條件φ(x,y)=0下的可能極值點。
7. 拉格朗日量怎么求
一個動力系統的拉格朗日量,是一個概括整個系統動力狀態的函數。拉格朗日量是因約瑟夫·路易斯·拉格朗日而命名。在拉格朗日力學里,假若已知一個系統的拉格朗日量,則可以將拉格朗日量直接代入拉格朗日方程式,來求得此系統的運動方程式。拉格朗日量(簡稱拉氏量,也作拉格朗日函數)是在多個學科中所運用的描述約束條件下的最優目標方程的一種形式。
在經濟學中, 交換優化的拉格朗日方程 L = W[U1(x1,y1),U2(x2,y2)] ? λF(X,Y,A,B) W:社會福利函數;F=生產函數;A、B為兩種生產要素;x、y為兩種產品。
8. 拉格朗日乘數法計算
拉格朗日乘數法是多元微分學中用來求函數z=f(x,y)在滿足g(x,y)=0條件下的極值問題的方法:通過設F(x,y)=f(x,y)+λg(x,y),其中λ稱為拉格朗日乘數,并求F(x,y)的極值點求得條件極值的方法
9. 拉格朗日計算方法對機電的應用
拉格朗日出生在意大利的都靈。由于是長子,父親一心想讓他學習法律,然而,拉格朗日對法律毫無興趣,偏偏喜愛上文學。
直到16歲時,拉格朗日仍十分偏愛文學,對數學尚未產生興趣。16歲那年,他偶然讀到一篇介紹牛頓微積分的文章《論分析方法的優點》,使他對牛頓產生了無限崇拜和敬仰之情,于是,他下決心要成為牛頓式的數學家。
在進入都靈皇家炮兵學院學習后,拉格朗日開始有計劃地自學數學。由于勤奮刻苦,他的進步很快,尚未畢業就擔任了該校的數學教學工作。20歲時就被正式聘任為該校的數學副教授。從這一年起,拉格朗日開始研究“極大和極小”的問題。他采用的是純分析的方法。1758年8月,他把自己的研究方法寫信告訴了歐拉,歐拉對此給予了極高的評價。從此,兩位大師開始頻繁通信,就在這一來一往中,誕生了數學的一個新的分支——變分法。
1759年,在歐拉的推薦下,拉格朗日被提名為柏林科學院的通訊院士。接著,他又當選為該院的外國院士。
1762年,法國科學院懸賞征解有關月球何以自轉,以及自轉時總是以同一面對著地球的難題。拉格朗日寫出一篇出色的論文,成功地解決了這一問題,并獲得了科學院的大獎。拉格朗日的名字因此傳遍了整個歐洲,引起世人的矚目。兩年之后,法國科學院又提出了木星的4個衛星和太陽之間的攝動問題的所謂“六體問題”。面對這一難題,拉格朗日毫不畏懼,經過數個不眠之夜,他終于用近似解法找到了答案,從而再度獲獎。這次獲獎,使他贏得了世界性的聲譽。
1766年,拉格朗日接替歐拉擔任柏林科學院物理數學所所長。在擔任所長的20年中,拉格朗日發表了許多論文,并多次獲得法國科學院的大獎:1722年,其論文《論三體問題》獲獎;1773年,其論文《論月球的長期方程》再次獲獎;1779年,拉格朗日又因論文《由行星活動的試驗來研究彗星的攝動理論》而獲得雙倍獎金。
在柏林科學院工作期間,拉格朗日對代數、數論、微分方程、變分法和力學等方面進行了廣泛而深入的研究。他最有價值的貢獻之一是在方程論方面。他的“用代數運算解一般n次方程(n4)是不能的”結論,可以說是伽羅華建立群論的基礎。