午夜三级a三级三点在线观看-韩国精品一区二区三区无码视频-免费无码肉片在线观看-男人扒开女人腿做爽爽视频

返回首頁

拉格朗日乘數(shù)法解析解(拉格朗日乘數(shù)法解釋)

來源:m.wzyzyouth.com???時(shí)間:2023-05-11 03:13???點(diǎn)擊:53??編輯:admin 手機(jī)版

一、解拉格朗日乘數(shù)法的技巧?

拉格朗日乘數(shù)法解法:在數(shù)學(xué)最優(yōu)問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。

這種方法將一個(gè)有n個(gè)變量與k個(gè)約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n+k個(gè)變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)向量的系數(shù)。此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。

二、拉格朗日乘數(shù)法公式?

拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來解決有約束極值的一種方法。

有約束極值:舉例說明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。

上述問題可以通過消元來解決,例如消去x,則變成

z=(y-1)^2+y^2

則容易求解。

但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時(shí)消元將會(huì)很繁,則須用拉格朗日乘數(shù)法,過程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f對(duì)x的偏導(dǎo)=0

f對(duì)y的偏導(dǎo)=0

f對(duì)k的偏導(dǎo)=0

解上述三個(gè)方程,即可得到可讓z取到極小值的x,y值。

拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡(jiǎn)單地舉一例,更復(fù)雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學(xué)教材。

三、拉格朗日乘數(shù)法原理?

拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的 多元函數(shù)的 極值的方法。

這種方法將一個(gè)有n 個(gè)變量與k 個(gè) 約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。

這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)向量的系數(shù)。

此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。

四、什么是拉格朗日乘數(shù)法?

拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的 多元函數(shù)的 極值的方法。

這種方法將一個(gè)有n 個(gè)變量與k 個(gè) 約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)向量的系數(shù)。此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值

五、拉格朗日乘數(shù)法適用條件?

拉格郎日乘數(shù)法的適用條件是乘數(shù)不等于0。

求最值(最值是某個(gè)區(qū)間的最大或最小,注意最大/最小可能有同值的多個(gè),所以也不唯一哈,極值是一個(gè)小范圍,很小很小,內(nèi)的最值).因?yàn)樽钪悼偸前l(fā)生在極值點(diǎn)+區(qū)間邊界點(diǎn)+間斷點(diǎn)處,所以可以用拉朗乘數(shù)求出極值,用邊界和間斷點(diǎn)極限求出可疑極值,比較他們的大小,就可以找到區(qū)間內(nèi)的最值了.特別地,若函數(shù)在區(qū)間內(nèi)用拉朗求出僅一個(gè)極值,切很易判定沒有其他可疑極值點(diǎn),就可以直接判斷那個(gè)極值是最值;或者可以判斷函數(shù)在所給區(qū)間內(nèi)單調(diào)(比如exp(x^2+y^2)在(x>0,y>0)時(shí)單調(diào)遞增),就不用求極值(因?yàn)闆]有),直接求區(qū)間邊界(或者間斷點(diǎn),有間斷點(diǎn)也可以單調(diào)的)作為最值。

六、拉格朗日乘數(shù)法中的乘數(shù)λ能為零?

拉格朗日乘數(shù)的數(shù)值是按照實(shí)際演算獲取的,不排除為0的可能性。根據(jù)推導(dǎo)過程可知,λ是不可以等于0的。

1.如果等于0,f對(duì)x求導(dǎo),就是原函數(shù)對(duì)x求導(dǎo)

2.f對(duì)y求導(dǎo),就是原函數(shù)對(duì)y求導(dǎo)

3.上面兩個(gè)式子一般是不可能解出來的 由拉格朗日乘數(shù)法的推導(dǎo)過程可以看出,λ≠0,否則駐點(diǎn)(x0,y0)滿足的式子就變成了

4.f對(duì)x的偏導(dǎo)=0

5.f對(duì)y的偏導(dǎo)=0

6.f對(duì)λ的偏導(dǎo)=0

7.前面兩個(gè)式子一般是不成立的。

8.求z=xy^2在x^2+y^2=1下的極值?一般應(yīng)該是求最大值、最小值!

9.一種方法是化成一元函數(shù)的極值z(mì)=x(1-x^2),-1≤x≤1.

10.用拉格朗日乘數(shù)法的話,設(shè)L(x,y)=xy^2+λ(x^2+y^2-1),解方程組

11.y^2+2λx=0

12.2xy+2λy=0

13.x^2+y^2=1

14.前兩個(gè)方程求出x=-λ,y^2=2λ^2,代入第三個(gè)式子得λ=±1/√3,所以x=±1/√3,y=±√(2/3),比較4個(gè)駐點(diǎn)處的函數(shù)值可得最大值和最小值

七、拉格朗日乘數(shù)法求最值?

構(gòu)造函數(shù)4a+b+m(a^2+b^2+c^2-3)

對(duì)函數(shù)求偏導(dǎo)并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同時(shí)a^2+b^2+c^2=3

所以

m=根號(hào)17/2根號(hào)3

a=-4根號(hào)3/根號(hào)17

b=-根號(hào)3/根號(hào)17

4a+b=-根號(hào)51

1、是求極值的,不是求最值的

2、如果要求最值,要把極值點(diǎn)的函數(shù)值和不可導(dǎo)點(diǎn)的函數(shù)值還有端點(diǎn)函數(shù)值進(jìn)行比較

3、書上說是可能的極值點(diǎn),這個(gè)沒錯(cuò),比如f(x)=x^3,在x=0點(diǎn)導(dǎo)數(shù)確實(shí)為0,但是不是極值點(diǎn),所以是可能的極值點(diǎn),到底是不是要帶入原函數(shù)再看

八、用拉格朗日乘數(shù)法求極值:)?

  在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。

這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)向量的系數(shù)。此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。

九、拉格朗日乘數(shù)法對(duì)x求導(dǎo)

在這里xyz都是自變量,

V=xyz就是一個(gè)多元函數(shù),并不是方程,

x,y,z的變化都會(huì)使V發(fā)生變化

沒錯(cuò),xyz滿足了條件

φ(x,y,z)=2xy+2yz+2xz-a^2=0

你當(dāng)然可以把其中一個(gè)用另外兩個(gè)來表示,

再帶回到V=xyz中,

然后只求偏導(dǎo)兩次就可以了

十、拉格朗日乘數(shù)法求需求函數(shù)?

拉格朗日乘數(shù)法是多元微分學(xué)中用來求函數(shù)z=f(x,y)在滿足g(x,y)=0條件下的極值問題的方法:通過設(shè)F(x,y)=f(x,y)+λg(x,y),其中λ稱為拉格朗日乘數(shù),并求F(x,y)的極值點(diǎn)求得條件極值的方法

頂一下
(0)
0%
踩一下
(0)
0%
主站蜘蛛池模板: 少妇被爽到高潮在线观看| 人妻少妇无码精品专区| 99久久国产宗和精品1上映| 特大巨黑吊av在线播放| 亚洲欧美牲交| 久久国产色av免费观看| 中文字幕精品亚洲无线码一区 | 日日摸夜夜爽无码毛片精选| 国产xxxx99真实实拍| 国精产品一品二品国精品69xx| 国产高潮国产高潮久久久| 亚洲人成网网址在线看| 激情综合五月| 亚洲人成人网站18禁| 国产成人精品a视频| 国产成人综合久久免费导航| 免费在线黄色电影| 水蜜桃成视频人在线看| 99蜜桃在线观看免费视频网站| 乳乱公伦爽到爆| 无码人妻丰满熟妇区免费| 国产乱子伦在线观看| 成人免费无码大片a毛片抽搐色欲| 亚洲碰碰人人av熟女天堂| h工口全彩里番库18禁无遮挡| 亚洲熟妇av一区二区三区漫画| 亚洲成av人片无码天堂下载| 亚洲国产一区二区精品无码| 性一交一乱一色一视频| 久久国产精品波多野结衣av| 色哟哟精品视频在线观看| 白天躁晚上躁麻豆视频| 精品亚洲国产成av人片传媒| 久久精品国产久精国产一老狼| 99精产国品一二三产品香蕉| 国产成+人+综合+亚洲 欧美| 美女黄18以下禁止观看| 国产精品福利在线观看无码卡一| 国偷自产视频一区二区久| 亚洲成a∨人片在线观看不卡| 樱花草在线播放免费中文|