1. 拉格朗日求解
[拉格朗日(Lagrange)中值定理]若函數f(x)滿足條件:
(1)在閉區間[a,b]上連續;
(2)在開區間(a,b)內可導,則在(a,b)內至少存在一點ξ,使得
顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
2. 拉格朗日求解線性規劃問題
一.線性插值(一次插值) 已知函數f(x)在區間[xk ,xk+1 ]的端點上的函數值yk =f(xk ), yk+1 = f(xk+1 ),求一個一次函數y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其幾何意義是已知平面上兩點(xk ,yk ),(xk+1 ,yk+1 ),求一條直線過該已知兩點。
首先,插值法是:利用函數f (x)在某區間中插入若干點的函數值,作出適當的特定函數,在這些點上取已知值,在區間的其他點上用這特定函數的值作為函數f (x)的近似值,這種方法稱為插值法.
其目的便就是估算出其他點上的函數值.
而拉格朗日插值法就是一種插值法.
3. 拉格朗日求解不等式約束
約瑟夫·拉格朗日
外文名
Joseph-Louis Lagrange
別名
拉格朗日
性別
男
出生日期
1736年
去世日期
1813年4月10日
國籍
法國
出生地
意大利都靈
職業
數學家
物理學家
代表作品
《關于解數值方程》和《關于方程的代數解法的研究》
主要成就
拉格朗日中值定理等
數學分析的開拓者
4. 拉格朗日求解需求函數
拉格朗日定理
數理科學定理
拉格朗日定理存在于多個學科領域中,分別為:流體力學中的拉格朗日定理;微積分中的拉格朗日定理;數論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質量力有勢的情況下,如果初始時刻某部分流體內無渦,則在此之前或以后的任何時刻中這部分流體皆為無渦。以某一起始時刻每個質點的坐標位置(a、b、c),作為該質點的標志。 如果在一個正整數的因數分解式中,沒有一個數有形式如4k+3的質數次方,該正整數可以表示成兩個平方數之和。
5. 拉格朗日求解器
在數學最優化問題中,拉格朗日乘數法(以數學家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的多元函數的極值的方法。這種方法將一個有n 個變量與k 個約束條件的最優化問題轉換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標量未知數,即拉格朗日乘數:約束方程的梯度(gradient)的線性組合里每個矢量的系數。
引入新變量拉格朗日乘數,即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設出的隱函數的微分為零的未知數的值。
6. 拉格朗日求解方程
羅爾中值定理能推出拉格朗日中值定理和柯西中值定理,反過來拉格朗日中值定理和柯西中值定理也可以推出羅爾中值定理。
泰勒中值定理是由柯西中值定理推出來的。泰勒中值定理在一階導數情形就是拉格朗日中值定理。
羅比達法則是柯西中值定理在求極限時應用。
7. 拉格朗日求解最優化
拉格朗日定理存在于多個學科領域中,分別為:流體力學中的拉格朗日定理;微積分中的拉格朗日定理;數論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質量力有勢的情況下,如果初始時刻某部分流體內無渦,則在此之前或以后的任何時刻中這部分流體皆為無渦。以某一起始時刻每個質點的坐標位置(a、b、c),作為該質點的標志。 如果在一個正整數的因數分解式中,沒有一個數有形式如4k+3的質數次方,該正整數可以表示成兩個平方數之和。
8. 拉格朗日求解極限
這題不能用拉格朗日中值定理,因為拆成[cos(sinx)-cosx]/(sinx-x)*(sinx-x)/(1-cosx)sinx之後,分別計算每項極限.第一項用拉格朗日中值定理得極限是0,而第二項用等價無窮小替換得極限是∞,所以不能利用積的極限等於極限的積來拆開.這題最簡單就是分子用和差化積公式整理,然後等價替換分子=-2sin[(sinx+x)/2]*sin[(sinx-x)/2]~(x+sinx)(x-sinx)/2~x^4/6分母~x^4/2因此原式=1/3
9. 拉格朗日求解法
構造函數4a+b+m(a^2+b^2+c^2-3)
對函數求偏導并令其等于0
4+2ma=0
1+2mb=0
2mc=0
同時a^2+b^2+c^2=3
所以
m=根號17/2根號3
a=-4根號3/根號17
b=-根號3/根號17
4a+b=-根號51
1、是求極值的,不是求最值的
2、如果要求最值,要把極值點的函數值和不可導點的函數值還有端點函數值進行比較
3、書上說是可能的極值點,這個沒錯,比如f(x)=x^3,在x=0點導數確實為0,但是不是極值點,所以是可能的極值點,到底是不是要帶入原函數再看
10. 拉格朗日求解微分運動方程
要知道全微分的公式是dz=z'(x)dx+z'(y)dy,因此分別求出這兩個導數,z'(x)(x,y)=2x/(1+x^2+y^2), z'(y)(x,y)=2y/(1+x^2+y^2), 所以z'(x)(1,2)=2/6=1/3,z'(y)(1,2)=4/6=2/3,所以dz(1,2)=dx/3+2dy/3.
11. 拉格朗日求解效用最大化
拉格朗日法是描述流體運動的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個質點的運動參數(位置坐標、速度、加速度等)隨時間的變化規律。綜合所有流體質點運動參數的變化,便得到了整個流體的運動規律。
在研究波動問題時,常用拉格朗日法