午夜三级a三级三点在线观看-韩国精品一区二区三区无码视频-免费无码肉片在线观看-男人扒开女人腿做爽爽视频

返回首頁

拉格朗日插值法(拉格朗日插值法的應用)

來源:m.wzyzyouth.com???時間:2022-12-29 00:09???點擊:71??編輯:admin 手機版

1. 拉格朗日插值法的應用

在數值分析中,拉格朗日插值法是以法國十八世紀數學家約瑟夫·拉格朗日命名的一種多項式插值方法。

許多實際問題中都用函數來表示某種內在聯系或規律,而不少函數都只能通過實驗和觀測來了解。如對實踐中的某個物理量進行觀測,在若干個不同的地方得到相應的觀測值,拉格朗日插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。

2. 拉格朗日插值法實驗原理

拉格朗日插值公式

約瑟夫·拉格朗日發現的公式

拉格朗日插值公式線性插值也叫兩點插值,已知函數y = f (x)在給定互異點x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構造一個一次多項式P1(x) = ax + b使它滿足條件P1 (x0) = y0 P1 (x1) = y1其幾何解釋就是一條直線,通過已知點A (x0, y0),B(x1, y1)。

3. 拉格朗日插值法應用在哪些方面

一、拉格朗日插值法

是以法國十八世紀數學家約瑟夫·路易斯·拉格朗日命名的一種多項式插值方法。許多實際問題中都用函數來表示某種內在聯系或規律,而不少函數都只能通過實驗和觀測來了解。如對實踐中的某個物理量進行觀測,在若干個不同的地方得到相應的觀測值,拉格朗日插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。這樣的多項式稱為拉格朗日(插值)多項式。

二、Lagrange基本公式:

拉格朗日插值公式,設,y=f(x),且xi< x < xi+1,i=0,1,…,n-1,有:

Lagrange插值公式計算時,其x取值可以不等間隔。由于y=f(x)所描述的曲線通過所有取值點,因此,對有噪聲的數據,此方法不可取。

一般來說,對于次數較高的插值多項式,在插值區間的中間,插值多項式能較好地逼近函數y=f(x),但在遠離中間部分時,插值多項式與y=f(x)的差異就比較大,越靠近端點,其逼近效果就越差。

三、C++實現

#include <iostream>

#include <conio.h>

#include <malloc.h>

double lagrange(double *x,double *y,double xx,int n)/*拉格朗日插值算法*/

{

int i,j;

double *a,yy=0.0;/*a作為臨時變量,記錄拉格朗日插值多項式*/

a=(double *)malloc(n*sizeof(double));

for(i=0;i<=n-1;i++)

{

a[i]=y[i];

for(j=0;j<=n-1;j++)

if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);

yy+=a[i];

}

free(a);

return yy;

}

/

int main()

{

int i;

int n;

double x[20],y[20],xx,yy;

printf("Input n:");

scanf("%d",&n);

if(n>=20)

{

printf("Error!The value of n must in (0,20).");

getch();

return 1;

}

if(n<=0)

{

printf("Error! The value of n must in (0,20).");

getch();

return 1;

}

for(i=0;i<=n-1;i++)

{

printf("x[%d]:",i);

scanf("%lf",&x[i]);

}

printf("\n");

for(i=0;i<=n-1;i++)

{

printf("y[%d]:",i);

scanf("%lf",&y[i]);

}

printf("\n");

printf("Input?xx:");

scanf("%lf",&xx);

yy=lagrange(x,y,xx,n);

printf("x=%.13f,y=%.13f\n",xx,yy);

getch();

}

4. 拉格朗日插值方法

拉格朗日插值法與牛頓插值法都是二種常用的簡便的插值法。但牛頓法插值法則更為簡便,與拉格朗日插值多項式相比較,它不僅克服了“增加一個節點時整個計算工作必須重新開始”的缺點,而且可以節省乘、除法運算次數。

同時,在牛頓插值多項式中用到的差分與差商等概念,又與數值計算的其他方面有著密切的關系。所以!!

從運算的角度來說牛頓插值法精確度高從數學理論上來說的話,我傾向于拉格朗日大神!!

話說拉格朗日當初不搞天文,不搞物理,專弄數學,估計是數學歷史上最偉大的數學家了,沒有之一。

5. 拉格朗日插值法基本原理

拉格朗日乘數原理(即拉格朗日乘數法)由用來解決有約束極值的一種方法。

有約束極值:舉例說明,函數 z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。

上述問題可以通過消元來解決,例如消去x,則變成

z=(y-1)^2+y^2

則容易求解。

但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時消元將會很繁,則須用拉格朗日乘數法,過程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f對x的偏導=0

f對y的偏導=0

f對k的偏導=0

解上述三個方程,即可得到可讓z取到極小值的x,y值。

拉格朗日乘數原理在工程中有廣泛的應用,以上只簡單地舉一例,更復雜的情況(多元函數,多限制條件)可參閱高等數學教材。

6. 利用拉格朗日插值法

構造函數4a+b+m(a^2+b^2+c^2-3)

對函數求偏導并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同時a^2+b^2+c^2=3

所以

m=根號17/2根號3

a=-4根號3/根號17

b=-根號3/根號17

4a+b=-根號51

1、是求極值的,不是求最值的

2、如果要求最值,要把極值點的函數值和不可導點的函數值還有端點函數值進行比較

3、書上說是可能的極值點,這個沒錯,比如f(x)=x^3,在x=0點導數確實為0,但是不是極值點,所以是可能的極值點,到底是不是要帶入原函數再看

7. 拉格朗日插值法的應用概述

羅爾中值定理能推出拉格朗日中值定理和柯西中值定理,反過來拉格朗日中值定理和柯西中值定理也可以推出羅爾中值定理。

泰勒中值定理是由柯西中值定理推出來的。泰勒中值定理在一階導數情形就是拉格朗日中值定理。

羅比達法則是柯西中值定理在求極限時應用。

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
主站蜘蛛池模板: 日韩欧美亚洲国产精品字幕久久久 | gogo专业大尺度亚洲高清人体 | 最新国产乱人伦偷精品免费网站| 亚洲a∨精品一区二区三区下载 | 亚洲日韩av无码| 久久久久久夜精品精品免费啦| 亚洲丶国产丶欧美一区二区三区| 国产a国产片国产| 亚洲综合激情另类专区| 少妇特殊按摩高潮惨叫无码| 疯狂做受xxxx欧美老人| 特黄 做受又硬又粗又大视频 | 少妇被黑人到高潮喷出白浆| 久久无码高潮喷水抽搐| 人人妻人人澡人人爽人人精品| 亚洲精品字幕在线观看| 日韩av无码精品人妻系列| 久久伊人五月丁香狠狠色| 久久久久av无码免费网| 末发育娇小性色xxxxx视频| 色www视频永久免费| 男女性高爱潮免费网站| aa级女人大片免费视频| 国产中老年妇女精品| 性色生活片在线观看| 粗了大了 整进去好爽视频| 免费无码作爱视频| 男女性爽大片视频免费看| 国产精品99久久不卡| 久久婷婷五月综合色奶水99啪| 欧美三级韩国三级日本三斤 | 天堂新版在线资源| 亚洲人成色7777在线观看不卡| 大学生被内谢粉嫩无套| 国产丰满乱子伦无码专| 亚洲欧美精品suv| 50岁老熟女高潮喷水| 极品粉嫩小泬无遮挡20p| 在线欧美精品一区二区三区| 久久夜色精品国产欧美乱| 亚洲av成人无码久久精品老人|