1. 拉格朗日證明對數平均不等式
拉格朗日中值定理是微積分中的重要定理之一,大多數是利用羅爾中值定理構建輔助函數來證明的。
擴展資料
拉格朗日中值定理又稱拉氏定理,是微分學中的基本定理之一,它反映了可導函數在閉區間上的.整體的平均變化率與區間內某點的局部變化率的關系。拉格朗日中值定理是羅爾中值定理的推廣,同時也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一階展開)。
法國數學家拉格朗日于1797年在其著作《解析函數論》的第六章提出了該定理,并進行了初步證明,因此人們將該定理命名為拉格朗日中值定理。
2. 利用拉格朗日定理證明不等式
羅爾定理可知。
fa=fb時,存在某點e,使f′e=0。
開始證明拉格朗日。
假設一函數fx。
目標:證明fb-fa=f′e(b-a),即拉格朗日。
假設fx來做成一個毫無意義的函數,fx-(fb-fa)/(b-a)*x,我們也不知道他能干啥,是我們隨便寫的一個特殊函數,我們令它等于Fx。
這個特殊函數在于,這個a和b,正好滿足Fb=Fa,且一定存在這個a和b。
此時就有羅爾定理的前提了。
于是得出有一個e,能讓F′e=0(羅爾定理)
即(fx-(fb-fa)/(b-a)*x)′,
上面求導等于f′x-(fb-fa)/(b-a)。
將唯一的x帶換成e,并且整個式子等于0。
變成f′e-(fb-fa)/(b-a)=0→
f′e=(fb-fa)/(b-a)→
f′e(b-a)=(fb-fa)。
擴展資料
證明過程
證明:因為函數 f(x) 在閉區間[a,b] 上連續,所以存在最大值與最小值,分別用 M 和 m 表示,分兩種情況討論:
1. 若 M=m,則函數 f(x) 在閉區間 [a,b] 上必為常函數,結論顯然成立。
2. 若 M>m,則因為 f(a)=f(b) 使得最大值 M 與最小值 m 至少有一個在 (a,b) 內某點ξ處取得,從而ξ是f(x)的極值點,又條件 f(x) 在開區間 (a,b) 內可導得,f(x) 在 ξ 處取得極值,由費馬引理推知:f'(ξ)=0。
另證:若 M>m ,不妨設f(ξ)=M,ξ∈(a,b),由可導條件知,f'(ξ+)<=0,f'(ξ-)>=0,又由極限存在定理知左右極限均為 0,得證。
幾何意義
若連續曲線y=f(x) 在區間 [a,b] 上所對應的弧段 AB,除端點外處處具有不垂直于 x 軸的切線,且在弧的兩個端點 A,B 處的縱坐標相等,則在弧 AB 上至少有一點 C,使曲線在C點處的切線平行于 x 軸。
首先是式子進行整理,整理成左邊是式子,右邊是零,其次是構造函數,構造的這個函數的導數要等于原來的函數,這便于用羅爾定理,其次是要找出能使用羅爾定理的最后一個條件,即兩個函數值相等,最后用羅爾定理證明必有一點導數值為零,即得證。
3. 用拉格朗日乘數法證明均值不等式
拉格郎日乘數法的適用條件是乘數不等于0。
求最值(最值是某個區間的最大或最小,注意最大/最小可能有同值的多個,所以也不唯一哈,極值是一個小范圍,很小很小,內的最值).因為最值總是發生在極值點+區間邊界點+間斷點處,所以可以用拉朗乘數求出極值,用邊界和間斷點極限求出可疑極值,比較他們的大小,就可以找到區間內的最值了.特別地,若函數在區間內用拉朗求出僅一個極值,切很易判定沒有其他可疑極值點,就可以直接判斷那個極值是最值;或者可以判斷函數在所給區間內單調(比如exp(x^2+y^2)在(x>0,y>0)時單調遞增),就不用求極值(因為沒有),直接求區間邊界(或者間斷點,有間斷點也可以單調的)作為最值。
4. 拉格朗日證明不等式例題
約瑟夫·拉格朗日
外文名
Joseph-Louis Lagrange
別名
拉格朗日
性別
男
出生日期
1736年
去世日期
1813年4月10日
國籍
法國
出生地
意大利都靈
職業
數學家
物理學家
代表作品
《關于解數值方程》和《關于方程的代數解法的研究》
主要成就
拉格朗日中值定理等
數學分析的開拓者
5. 拉格朗日中值定理證明對數不等式
●【均值不等式的變形】
(1)對正實數a,b,有a^2+b^2≥2ab(當且僅當a=b時取“=”號),a^2+b^2>0>-2ab(2)對非負實數a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0(3)對負實數a,b,有a+b<0<2√(a*b)(4)對實數a,b(a≥b),有a(a-b)≥b(a-b)(5)對非負數a,b,有a^2+b^2≥2ab≥0(6)對非負數a,b,有a^2+b^2≥1/2*(a+b)^2≥ab(7)對非負數a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^
2(8)對非負數a,b,c,有a^2+b^2+c^2≥ab+bc+ac(9)對非負數a,b,有a^2+ab+b^2≥3/4*(a+b)^22/(1/a+1/b)≤√ab≤a+b/2≤√((a^2+b^2)/2)
例一證明不等式:2√x≥3-1/x(x>0)證明:2√x+1/x=√x+√x+1/x≥3*3次√(√x)*(√x)*(1/x)=3所以,2√x≥3-1/
x例二長方形的面積為p,求周長的最小值解:設長,寬分別為a,b,則a*b=p因為a+b≥2√ab,所以2(a+b)≥4√ab=4√p周長最小值為4√p例三長方形的周長為p,求面積的最大值解:設長,寬分別為a,b,則2(a+b)=p因為a+b=p/2≥2√ab,所以ab≤p^2/1粻嘗綱妒蕺德告泉梗滬6面積最大值是p^2/16
6. 拉格朗日中值定理證明對數平均不等式
log2(x)^2+2log0.5(x)-3
令log2(x)=a,所以long0.5(x)=-a
即a^2-2a-3>=0,a>=3或者a<=-1
所以x>=8或者0<x<=0.5
(log?x)2+2log(0.5)x-3≥0
log(0.5)x=-log?x
原不等式即
(log?x)2-2log?x-3≥0
這是關于log?x的二次不等式
解得:
log?x≤-1或log?x≥3
∴ log?x≤log?(1/2)或log?x≥log?8
∴0<x≤1/2或x≥8
∴不等式的解集為(0,1/2]U[8,+∞)
7. 用拉格朗日公式證明不等式
1拉格朗日公式
拉格朗日方程
對于完整系統用廣義坐標表示的動力方程,通常系指第二類拉格朗日方程,是法國數學家J.-L.拉格朗日首先導出的。通常可寫成:
式中T為系統用各廣義坐標qj和各廣義速度q'j所表示的動能;Qj為對應于qj的廣義力;N(=3n-k)為這完整系統的自由度;n為系統的質點數;k為完整約束方程個數。
插值公式
線性插值也叫兩點插值,已知函數y = f(x)在給定互異點x0, x1上的值為y0= f(x0),y1= f(x1)線性插值就是構造一個一次多項式
P1(x) = ax + b
使它滿足條件
P1(x0) = y0P1(x1) = y1
其幾何解釋就是一條直線,通過已知點A (x0, y0),B(x1, y1)。
8. 拉格朗日證明不等式的方法
一個推論,利用拉格朗日恒等式可以證明柯西不等式,好了,下面開始給你證明.‘
有一個適合中學生的拉格朗日恒等式:
[(a1)^2+(a2)^2][(b1)^2+(b2)^2]=
[(a1)(b1)+(a2)(b2)]^2+[(a2)(b1)-(a1)(b2)]^2
[(a1)^2+(a2)^2+(a3)^2][(b1)^2+(b2)^2+(b3)^2]=
=[(a1)(b1)+(a2)(b2))+(a3)(b3)]^2+[(a2)(b1)-(a1)(b2)]^2+
+[(a3)(b1)-(a1)(b3)]^2+[(a2)(b3)-(a3)(b2)]^2
[(a1)^2+...+(an)^2][(b1)^2+...+(bn)^2]=
=[(a1)(b1)+...+(an)(bn)]^2+[(a2)(b1)-(a1)(b2)]^2+
+[(a3)(b1)-(a1)(b3)]^2+..+[(a(n-1))(bn)-(an)(b(n-1))]^2
.
9. 怎么利用拉格朗日證明不等式
拉格朗日定理存在于多個學科領域中,分別為:流體力學中的拉格朗日定理;微積分中的拉格朗日定理;數論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質量力有勢的情況下,如果初始時刻某部分流體內無渦,則在此之前或以后的任何時刻中這部分流體皆為無渦。以某一起始時刻每個質點的坐標位置(a、b、c),作為該質點的標志。 如果在一個正整數的因數分解式中,沒有一個數有形式如4k+3的質數次方,該正整數可以表示成兩個平方數之和。
10. 用拉格朗日中值定理證明對數均值不等式
均值不等式的使用條件:
一正:數字首先要都大于零,兩數為正
二定:數字之間通過加或乘可以有定值出現,乘積為定值——可以不是具體的數字,但在題目中必須是不變的量;
三相等:檢驗等號是不是取得到,當且僅當兩數相等才有不等式的等號成立,一般第三步很容易被忽略,因此這也是均值不等式的易錯點之一。
用均值不等式求函數的最值,在具體求解時,應注意考查下列三個條件:
1、函數的解析式中,各項均為正數;
2、函數的解析式中,含變數的各項的和或積必須有一個為定值;
3、函數的解析式中,含變數的各項均相等,取得最值擴展資料:均值不等式的常見公式:a^2+b^2 ≥ 2ab√(ab)≤(a+b)/2 ≤(a^2+b^2)/2a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+ac
a+b+c≥3×三次根號abc均值不等式,又名平均值不等式、平均不等式,是數學中的一個重要公式。
公式內容為Hn≤Gn≤An≤Qn,即調和平均數不超過幾何平均數,幾何平均數不超過算術平均數,算術平均數不超過平方平均數。
均值不等式的四大證明方法:
1、直接歸納法
2、取對數證明法
3、排序不等式法
4、最后一個證明法